Vol. 3, No. 03; 2019

ISSN: 2456-7760

THE U.S. TRADE DEFICIT, UNEMPLOYMENT RATE AND DEBT: AN EMPIRICAL STUDY

ΒY

BRIAN EZEONU (M.A. Economics) Affiliation: Georgia State University Address: 27 Adetona close, ACO Estate Life Camp, Abuja Nigeria. Phone: +2347013226538

Abstract

This paper examines the relationship between US trade deficit, unemployment rate and its national debt between 1980 and 2016. The empirical analysis on the relationship between trade deficit and unemployment was carried out using an Autoregressive Distributed Lag model while that of the relationship between the trade deficit and national debt was estimated using a 2-Stage Least Square estimation technique because of endogeneity problem associated with the model. The variables used in the study include trade deficit, growth rate, unemployment rate, public debt, interest rate, government expenditure, real oil price and foreign direct investment. This variables were tested for stationary and the result showed that only public debt was I(0) while the rest of the variables were I(1) which justifies the use of the ARDL model for the study. The study finds that a billion dollar reduction in the US trade deficit is associated with about a 0.36 percent reduction on the US national debt.

Keywords: Trade deficit, Unemployment, Debt, United States, International trade, Trade Policy.

JEL classification: F13

Introduction

Trade deficit is an unfavorable balance of trade where the value of imports of a country exceeds its exports. There has been growing concerns over the current US trade deficit and its possible effects on the economy which made it one of the focal issues in the last US presidential election.

There has been theories associating the wellbeing of an economy to its trade deficit but there hasn't been a consensus on the nature of this relationship. While some economists believe it has a positive effect on an economy others believe a negative relationship is the case which can be seen from the different opinions expressed by today's policy and political analysts.

The United States was not a pro free trade country until after the second world war when the General Agreement on Tariffs and trade and the International trade Organization were established. GATT (1947) was an agreement meant to negotiate trade barrier reduction among different nations so as to boost economic recovery. According to Bovard (1994), "GATT was the broadest and most comprehensive trade agreement in history equivalent to a one-third cut in tariff levels around the world". This trade agreement was signed by 23 nations in Geneva

Vol. 3, No. 03; 2019

ISSN: 2456-7760

October 1947 and was in effect from 1948 to 1993 when it was ended and replaced by the World Trade Organization in1995. While GATT applied only on merchandise goods the WTO incorporated trade of services and intellectual property and functioned as an independent institution that provides rules regulating trade among its 154 member countries.

According to the office of the United States trade representative, the United States has free trade agreements in force with 20 countries including Canada, Singapore, Korea, Israel, Australia etc. The United States recently completed the negotiations of a regional Asia Pacific trade agreement (TPP) and currently in negotiations of the Trans-Atlantic Trade and Investment Partnership (T-TIP) with the European Union and also the North American Free Trade Agreement (NAFTA) with Canada and Mexico.

Participation in free trade since the end of WWII has played a huge role in the growth of the American economy over the decades. Opening the economy to international trade has led to the expansion of America's most productive industries including Agriculture. Gorham (2016), United States agricultural output has more than doubled between 1948 and 2011 which makes US the top agricultural output exporter with \$182 billion with the second Brazil at \$88 billion (WTO).

Over the last few years there has been growing concerns over the growing US trade deficit and there is no consensus on what is responsible for this growing deficit either. Economists have pointed out different factors including US over consumption behavior, Over valued dollar, nature of exports (goods vs services), among others.

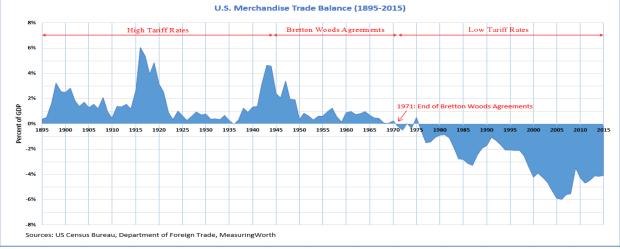


Chart 1: US Trade Balance.

By James 4 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59196484

Vol. 3, No. 03; 2019

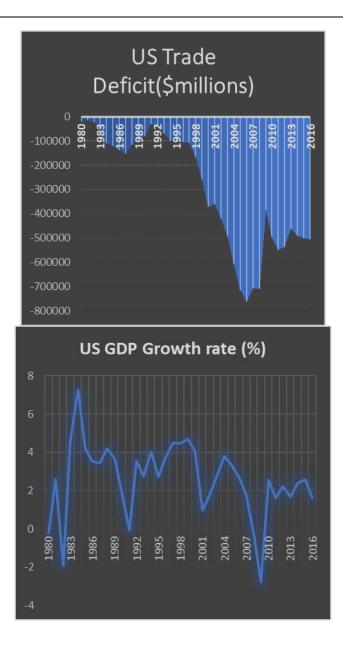
ISSN: 2456-7760

The huge increase in the US trade deficit in the early 2000s has been attributed to the inclusion of China in the World Trade Organization and it is no coincidence that they hold almost half of the current US deficit. Their relative trade advantage can also be attributed to the weaker Asian currencies as a result of the Asian financial crises (1997-1999).

Chart 2: US trade deficit with countries by percent

This paper is focused on investigating the nature of relationship between the US budget deficit, its unemployment rate and public debt. Therefore this paper answers the following two questions:

- 1. Is there a significant relationship between the US trade deficit and unemployment rate.
- 2. Is there a significant relationship between the US trade deficit and the magnitude of its national debt?


Literature Review

Over the years there has been a lot of theories, articles and reports on trade liberalization as well as how trade deficit affects an economy. Even though some believe trade deficit is a sign of a healthy economy such as witnessed in the United States other economies such as Germany, China, and Japan are thriving on trade surpluses and my next research interest is to investigate this diverging behavior.

Chart 3: US trade deficit and Growth rate 1980-2016

Vol. 3, No. 03; 2019

ISSN: 2456-7760

As can be seen in the chart 3 above, periods of declining GDP growth coincides with shrinking of the trade deficit (1991, 2001 and 2009) while the reverse can be seen in 2005.

One of the prominent names in history of economic thoughts, Adam Smith (1776) was of the view that it is unnecessary to lay extraordinary restraints upon the importation of goods from those countries with which the balance of trade is supposed to be unfavorable. He believed that if the balance of trade is even neither party gains nor loses. Keynes (1944) on the other hand was

Vol. 3, No. 03; 2019

ISSN: 2456-7760

an advocate of balance of trade. Be proposed a plan in which international would be regulated in order to achieve balance of trade.

The monetary economists like Bastiat and later Freidman argued that trade deficits were actually a manifestation of profit rather than a loss. Bastiat (1845) was of the view that trade deficit was an indicator of a successful economy rather than a failing one. A successful growing economy would result in greater trade deficit while an unsuccessful economy would result in lower trade deficits.

There has also been a number of empirical studies on the effect of trade deficits, Gould and Ruffin (1996) argues that trade deficits are not necessarily a concern in predicting future economic growth. Large trade deficits may indicate high growth rates as countries import capital to expand productive capacity. On the issue of trade deficit and unemployment they argued that even though some economists believe that growing trade deficits translate into loss of jobs for Americans, this belief is based on the "fallacious assumption" that the capital inflows associated with the growing trade deficit are not used to enhance productivity. Gould and Ruffin went ahead to explain that the loss of jobs due to trade deficit would be restored by the inflows of capital which expands the economy. This view is also supported by David Griswold (1998) in his article Trade Deficits Don't Mean Lost Jobs, where he asserted that "Trade with other nations does not reduce the number of jobs, but it does quicken the pace at which production shifts from one sector to another. Trade, like new technology, lowers demand for some jobs while raising demand for others. Trade allows the United States to produce more Boeing jetliners, pharmaceuticals, software, and financial services for export, but trade also means we produce fewer shoes, T-shirts, Happy Meal toys, and computer memory chips. Meanwhile, total output and total employment keep growing. He believed that according to US trade deficit data there exists a positive correlation between large trade deficit and employment.

Papaioannou and Yi (2001) analyzed the effects of the US economic expansion on its trade balance by posing a hypothetical question "What would the US trade deficit have been if the United States and its trading partners were operating at potential rather than actual output holding all else equal?" which they answered by computing a potential output trade balance that represents the trade balance without the effect of cyclical force. By comparing this potential output trade balance with the actual trade balance, they were able to determine the extent to which cyclical forces contributed to the larger U.S. trade deficit. Their main finding was that the 1996-1999 economic boom can account for roughly a third of the sharp rise in the merchandise trade deficit during that period.

Hojjat (2014) investigated the relationship between the US current account balance and the U.S. rate of unemployment and found that as the US current account improves, the unemployment rate falls using a simple linear regression model.

Pinto (2012) investigated the labor market effects of trade liberalization using the Melitz framework and found that trade liberalization harms low-ability worker, benefits the high-ability worker and harms the welfare of an economy endowed with large fraction of low-ability worker.

Vol. 3, No. 03; 2019

On the issue of trade deficit and national debt many economists believe that the US trade deficit has nothing to do with its huge national debt. The increase in the national debt is believed to be as a result of the recurring budget deficit over the past decade. Hansen (2012) was of the view that the US federal debt is unlikely a product of trade imbalances and more likely the inability of elected officials to balance its revenues against expenditures.

Some economists argue otherwise, Solman (2009) believed that US trade deficits affects its National debt indirectly, that when we spend more than we earn, the rest of the world has more of our dollars which they can use to buy US assets and also buy US treasury bills, notes and bonds from the Government like the Chinese. There has been little or no empirical evidence supporting these relationships.

Data and Methodology

This study uses time series data (1980-2016) obtained from secondary sources: Federal Reserve Bank of St. Louis, census.gov, World Bank open data and U.S. Energy Information Administration. Before the estimation, we examined the properties of the variables of interest, the extent of cointegration between the variables of interest and then performed a test for the problem of endogeneity in the model.

Model specification and estimation: The objective of this study is to examine the nature of correlation between US trade deficit and its unemployment rate and also its national debt. To achieve the above objectives, for model 1, the Autoregressive Distributed Lag model (ARDL) was adopted because of the differences in the integration levels of the variables of interest. For model 2 which investigates the relationship between the US debt and its trade deficit this study uses the 2-Stage Least squares estimation technique to correct for the endogeneity problem detected from the Durbin-Wu-Hausman test for endogeneity.

Model 1

$$Unemp_{t} = \alpha_{0} + \alpha_{1}\sum_{i=1}^{n}Unemp_{t-i} + \alpha_{2}\sum_{i=1}^{n}Tdef_{t-i} + \alpha_{3}\sum_{i=1}^{n}Pbdt_{t-i} + \alpha_{4}\sum_{i=1}^{n}Lnfdi_{t-i} + u_{t}$$

Where:

Unemp=Unemployment rate

Tdef=Trade deficit

Pbdt=National debt

Lnfdi=Logged values of Foreign Direct Investment

www.ijebmr.com

Page 60

Vol. 3, No. 03; 2019

ISSN: 2456-7760

 α_1 , α_2 , α_3 and α_4 are parameters to be estimated and u_t represents the serially uncorrelated error terms. This study uses the Akaike's Information Criterion (AIC) to determine the optimum lag length for the ARDL model.

Model 2

 $Tdef_{t} = \pi_{0} + \pi_{1}Intr_{t} + \pi_{2}Psavert_{t} + v_{1t}$ $Lnpbdt_{t} = \beta_{0} + \beta_{1}Tdef_{t} + \beta_{2}Bdef_{t} + v_{2t}$

Where:

Tdef = Trade Deficit

Intr = Interest Rate

Psavert = Private Savings rate

Lnpbdt = Logged value of the National debt

 β_1 and β_2 are parameters to be estimated and v_{2t} represents the serially uncorrelated error terms.

RESULTS AND DISCUSSION

Analysis of variables: The study first tests for unit root in the time series to be used for analysis. This is important because most time series exhibit non-stationarity traits in their level form, which often pose a serious problem to econometric analysis and may therefore lead to spurious result if appropriate measures are not taken. To guard against spurious result, this study takes the step in checking the properties of the variables using the Augmented Dickey-Fuller (ADF) test developed by Dickey and Fuller (1981). The results are presented in Table 1 below;

Table 1: Unit Root Test

Variable	ADF value at levels	ADF value after first difference	Order of integration
Unemp	-1.775 [-2.969]	-3.679 [-2.972]	I(1)
Tdef	-1.078 [-2.969]	-5.547 [-2.972]	I(1)
Pbdt	5.625 [-2.969] **		I(0)

Vol. 3, No. 03; 2019

ISSN: 2456-7760

Lnfdi	-1.366 [-2.969]	-6.392 [-2.972]	I(1)
Intr	-1.420 [-2.969]	-5.940 [-2.972]	I(1)
Psavert	-2.579 [-2.969]	-8.034 [-2.972]	I(1)

Source: Researcher's Estimation using Stata 13

Note:- *, ** and *** denotes significance at 1%, 5% and 10% level respectively.

Figures within parenthesis indicate critical values. Mackinnon (1991) critical value for rejection of hypothesis of unit root applied. The table reveals that all the variables were integrated of order 1 except Pbdt which is stationary at level form.

Cointegration test: This study employed the Engle-Granger and augmented Engle-Granger test to test for cointegration among the variables of interest which involves performing a unit root test on residuals obtained from regressing Unemp on Tdef, Pbdt, Intr, realoilprices, Lnfdi, Psavert and Bdef and regressing Lnpbdt on Tdef, Intr, Psavert and Bdef. The results are shown in the table below;

Variable	Test Statistic	5% Critical value	P- value
u(model1)	-3.923	-2.969	0.0019
u(model2)	-3.552	-2.969	0.0068

TABLE 2: Cointegration test

Source: Researcher's Estimation using Stata 13

The result of the co-integration test in Table 2 fails to rejects the null hypothesis of at most one co-integrating variable at 5% critical value. It fails to rejects any co-integration at 5% significance level when compared with the critical values, which implies that there is presence of cointegrating relationship between the variables of interest.

Test for Endogeneity: The study uses the Durbin-Wu-Hausman test for endogeneity. The table below shows the results (full test results can be seen in the appendices).

Vol. 3, No. 03; 2019

ISSN: 2456-7760

TABLE 3: Test For Endogeneity

Variables	Coefficients	T- values	P- values
v(model1)	-1.01e-07	-0.03	0.977
v(model2)	3.63e-06	6.61**	0.000

Source: Researcher's Estimation using Stata 13

From the table above, using the t-test, at 5% level of significance, the coefficient of "v(model2)" is statistically significant, which indicates the presence of endogeneity problem thereby justifying the use of 2SLS for our second estimation.

Autoregressive Distributed Lag result: This estimated was carried out using stata and allowed stata to automatically select the optimal lag level using the Akaike's Information Criterion (AIC). It is also The result is shown in the table below:

Variables	Coefficients	T- values	P-values
Unemp L1	0.6096066	5.56**	0.000
Tdef	2.71e-06	2.74**	0.012
L1	-3.23e-06	-2.65**	0.015
L2	1.45e-06	1.27	0.219
Pbdt	0.0014067	5.13**	0.000
L1	-0.0002785	-0.65	0.520
L2	-0.0020352	-3.50**	0.002
L3	0.0008341	2.19**	0.040
Lnfdi	-0.5639011	-3.18**	0.005

TABLE 4: ARDL result. Dependent Variable: Unemp

www.ijebmr.com

Page 63

Vol. 3, No. 03; 2019

ISSN: 2456-7760

L1	0.1809109	0.80	0.435
L2	0.4290785	2.60**	0.017
CONS	1.102921	0.20	0.840

Source: Researcher's Estimation using Stata 13

The L in the table above indicates the different lag levels and ** indicates t-values significant at 5% level. R-squared of 0.97.

The coefficient on Tdef implies that a billion dollar reduction in the US trade deficit is associated with about a 0.27 percentage point increase in the Unemployment rate keeping all other factors. This coefficient is also statistically significant at 5% level given a t-stat of 2.74 and p-value 0.012.

It is also important to note from our result that the past value of the unemployment rate is also significantly associated with the current value.

The coefficient on Pbdt indicates that a billion dollar increase in the US national debt is associated with about a 0.14 percentage point increase in the unemployment rate keeping all other factors and is statistically significant at 5% level. The relationship between the Unemployment rate and the past values of debt seem to be ambiguous.

The coefficient on Lnfdi implies that a one percentage increase in Foreign Direct Investment is associated with about a 0.6 percentage point decrease in the US Unemployment rate keeping all other factors constant and is also statistically significant at 5% level.

The sign of the above coefficients conform to my expectations.

Post Estimation tests:

The study uses **Durbin Watson and Breusch Godfrey to test for serial correlation**, the result gave a chi-stat of 2.170 with a p-value of 0.1407, therefore we fail to reject the null hypothesis of no serial correlation at 5% level of significance which implies absence of serial correlation among the error terms.

The study uses the **Breusch Pagan/Cook Weisberg test to test for heteroscedasticity**, the result gave a chi-stat of 0.06 with a p-value of 0.8094, and therefore we fail to reject the null hypothesis of constant variance at 5% level of significance which implies absence of heteroscedasticity in the model.

Vol. 3, No. 03; 2019

ISSN: 2456-7760

The study uses **Ramsey RESET test to test for specification error in the model** and the result gave an F-stat of 2.49 with a p-value of 0.0933, therefore we fail to reject the null hypothesis of model has no omitted variables which implies this model was correctly specified.

The 2SLS result

The table below compares the 2SLS result with the OLS estimates.

Table 5: OLS and 2SLS results

Log of US debt regressed on trade deficit and budget deficit

		OLS results	2-Stage	Least
Square result			-	
Dependent Var: LnPbdt	t			
Trade Deficit	-0.0313	-0.364		
		(0.0448)		
(0.0563)**				
Budget Deficit	-0.051	-0.0293		
-	(0.025)**	(0.0288)		
Interest Rate	-17.18			
	(5.01)**			
Private savings rate	-14.89			
	(3.44)**			
Constant	10.07			
	(0.44)**			
Observations	37	37		
R-squared	0.8365	0.5543		
Source: Researcher's E	Estimation using Stata	13		

The coefficient on Trade deficit in the 2SLS model indicates that a billion dollar reduction in the trade deficit is associated with about a 0.36 percent reduction on the US national debt keeping all other factors constant. This coefficient is also significant at 5% level.

The result also show negative relationship between the budget deficit and the US national debt which implies that a billion dollars reduction in the budget deficit is associated with about a 0.03 percent reduction in debt. This coefficient is not significant at 5% level even though that of the OLS (0.051%) is significant at 5% level.

Post Estimation tests:

This study uses the Wooldridge test score to test the null hypothesis that Trade Deficit is exogenous. The result is presented in the table below:

Vol. 3, No. 03; 2019

ISSN: 2456-7760

Table 6: Test of endogeneity

Durbin (score) chi2(1)	18.7897	p- value = 0.0000
Wu-Hausman F(1,33)	34.05	p-value = 0.000

Source: Researcher's Estimation using Stata 13

The Wooldridge test score reject the null hypothesis that Trade Deficit is exogenous at 5% level of significance and the regression based test also rejects the null hypothesis that Trade deficit is exogenous. This implies that the estimates generated by the OLS estimation are inconsistent while the 2 Stage Least Squares estimates are consistent.

The study also uses the Stock and Yogo (2005) test to test the null hypothesis that the set of instruments is weak. This test satisfies the requirement that instrumental variables (Interest rate and Personal Savings rate) be correlated with the endogenous regressor (Trade Deficit). The result is presented in the table below:

 Table 7: Test for Weak Instruments

Minimum eigenvalue statistic = 24.6221

	10%	15%	20%	25%
2SLS Size of nominal 5% Wald test	19.93	11.59	8.75	7.25
LIML Size of nominal 5% Wald test	8.68	5.33	4.42	3.92

Source: Researcher's Estimation using Stata 13

The 2SLS Size of nominal 5% Wald test shows the critical values pertaining to Stock and Yogo (2005) characterization of weak instrument. If the Minimum eigenvalue statistic is greater than the critical value, we reject the null hypothesis that the set of instrument is weak. Since 24.62 is greater than 19.93 we reject the null hypothesis of weak instruments and using the LIML estimator gives us the same conclusion since 24.62 is greater than 8.68.

The study also uses Sargan's (1958) and Basmann's (1960) x^2 procedure to test for over identifying restrictions. This test justifies the requirement that the instruments must be uncorrelated with the structural error term and also tests if the structural equation is misspecified. If the test statistic of the Sargan and Basmann are significant at a specified level, it implies that either one or both of our my instrument is invalid or that there is a problem of misspecification in my structural model. The result of the test is presented in the table below:

 Table 8: Test of overidentifying restrictions

Vol. 3, No. 03; 2019

ISSN: 2456-7760

Sargan (score) chi2(1)	0.01103	p- value = 0.9164
Basmann chi2(1)	0.009841	p-value = 0.9210

Source: Researcher's Estimation using Stata 13

Both of the test statistics above are not significant at 5% level which implies that my instruments are valid and that the model was correctly specified.

CONCLUSION AND RECCOMENDATIONS

This paper discussed the history of US international trade participation and how its evolving trade policies interacting with the dynamics of the Global economy contributed to the economic state of the country and particularly its current trade deficit. The paper went further to analyze the different views held by different economic schools of thought including contemporary economists regarding the benefits from trade liberalization and how trade deficits which can be referred to as a negative balance of trade affects an economy. The study finally conducts an empirical analysis testing the relationship between trade deficit is associated with about a 0.27 percentage point increase in the Unemployment rate. Another empirical test was also conducted to test the relationship between the US trade deficit and its national debt and the paper finds that a billion dollar reduction in the trade deficit is associated with about a 0.36 percent reduction on the US national debt.

This paper is relatively consistent with Bastiat (1845) whom was of the view that trade deficit was an indicator of a successful economy rather than a failing one and that a successful growing economy would result in greater trade deficit. He also argued that it would be necessary to take the balance of trade backward and calculate gains from trade by the excess of imports over exports. This paper is also consistent with David Griswold's (1998) finding that there is a there exists a positive correlation between large trade deficit and employment. Even though most economists believe that the trade deficit does not have anything to do with the level of our national debt, this study argues otherwise.

Looking at my results and through my research I believe that in order to maintain the sustainability of both the US trade deficits and its national debt, the government should to more to improve the private savings rate. According to Gramlich (2004) the optimal level of government debt is related to the optimal level of savings which can be defined as the long-term path of consumption per worker. Countries like Japan, Germany and China thriving in trade surpluses have one thing in common a relatively high private savings rate compared to the United States. The OLS result in my result above also shows that an increase in the private savings rate reduce the level of the national debt. Private savings could be improved through encouraging workers to take full advantage of their employer's retirement programs. In conclusion, the US huge trade deficit is not necessarily a threat to the economy or employment, it

Vol. 3, No. 03; 2019

ISSN: 2456-7760

indicates a dynamic economy moving towards the industries in which it is more competitive in the global economy.

References

- Ahmmad, T., & Abou-Zaid, A. S. (2017). From Trade Deficit in Goods to Trade Surplus in Services: An Eclectic and Extended Gravity Model Approach to Analyzing the Determinants of Service Trade of the United States. *The IUP Journal of Applied 8 Economics*, 16(2).
- Amadeo, K. (2017, April 11). Why Can't America Just Make Everything It Needs? Retrieved October 31, 2017, from <u>https://www.thebalance.com/trade-deficit-by-county-3306264</u>
- Bastiat, C. F. (1845). Balance of Trade. Retrieved November 07, 2017, from https://mises.org/library/balance-trade
- Beladi, H., & Oladi, R. (2014). On Offshoring and Trade Deficit. *Review of Development Economics*, 18(3), 517-523. doi:10.1111/rode.12100
- Benedetto, J. B. (2014). Who Financed Recent U.S. Trade Deficits? *Journal of International Commerce and Economics*. Retrieved from http://www.usitc.gov/journals.
- Goldberg, L., & Dillon, E. W. (2007). Why a Dollar Depreciation May Not Close the U.S. Trade Deficit. *Current Issues in Economics and Finance, 13*(5)
- Gould, D. M., & Ruffin, R. J. (1996). Trade Deficits: Causes and Consequences [Review of federal reserve bank of Dallas *ECONOMIC REVIEW FOURTH QUARTER 1996*].
- Griswold, D. (1998). Trade Deficits Don't Mean Lost Jobs. Retrieved November 06, 2017, from <u>https://www.cato.org/publications/commentary/trade-deficits-dont-mean-lost-jobs</u>
- Hansen, S. (2012, December 14). Weekly Review: Trade Balance Deficit Causes Federal Debt? Retrieved November 06, 2017, from <u>http://www.nasdaq.com/article/weekly-review-trade-balance-deficit-causes-federal-debt-cm199152</u>
- Hojjatph.D., M. (2014). Will the Unemployment Rate Fall with a Robust Forecast for the U.S. Current Account Balance? *Journal of Economic & Financial Studies*, 2(04), 28. doi:10.18533/jefs.v2i03.8
- International Trade Organization. (2017, August 18). Retrieved October 16, 2017, from <u>https://en.wikipedia.org/wiki/International Trade Organization</u>
- Kafchinski, J. E. (2009, April 21). Foreign Trade: Data. Retrieved October 16, 2017, from https://www.census.gov/foreign-trade/statistics/historical/index.html
- Kahn, C. (2017, August 15). Mexico Outlines Goals For Upcoming NAFTA Trade Deal Negotiations. Retrieved October 16, 2017, from <u>http://www.npr.org/2017/08/15/543730248/mexico-outlines-goals-for-upcoming-nafta-trade-deal-negotiations</u>
- KIM, M. H. (2014). The U.S.–China Trade Deficit. *The International Trade Journal*, 28, 65-83. doi:10.1080/08853908.2013.814555
- Liew, L. H. (2010). US Trade Deficits and Sino-US Relations. *Journal of Contemporary Asia*,40(4), 656-673. doi:10.1080/00472336.2010.507051

Vol. 3, No. 03; 2019

ISSN: 2456-7760

- Morici, P. (2017, May 4). Our trade deficit puts us on the brink of another financial crisis. Retrieved October 16, 2017, from <u>http://www.foxnews.com/opinion/2017/05/04/our-trade-deficit-puts-us-on-brink-another-financial-crisis.html</u>
- Nash-Hoff, M. (2015, January 28). Is there a Relationship Between Our Trade Deficit and Our National Debt? Retrieved November 04, 2017, from <u>http://www.industryweek.com/blog/there-relationship-between-our-trade-deficit-and-our-national-debt</u>
- Papaioannou, S., & Yi, K. M. (2001). The effect of a booming economy on the U.S. budget deficit. *Current Issues in Economics and Finance*, 7(2).
- Pinto, M. D. (2012). International Trade and Unemployment: The Worker-Selection Effect. *Contributions to Economics International Trade and Unemployment*, 5-32. doi:10.1007/978-3-642-33236-4_2
- Rajasekar, T., & Deo, M. (2016). The Relationship Between Fiscal Deficit and Trade Deficit in India: An Empirical Enquiry Using Time Series Data. *The IUP Journal of Applied 28 Economics*, 15(1).
- Schmidt, M. (2008, July 23). In Praise Of Trade Deficits. Retrieved October 16, 2017, from http://www.investopedia.com/articles/economics/08/trade-deficit-effects.asp
- Scissors, D. (2017, February 06). Trade Reciprocity with China. Retrieved October 16, 2017, from <u>https://www.nationalreview.com/magazine/2017-02-06-0000/us-china-trade-trump</u>
- Soergel, A. (2017, August 18). *Does the Trade Deficit Matter?* (Rep.). Retrieved October 16, 2017, from Economy Reporter website: <u>https://www.usnews.com/news/the-report/articles/2017-08-18/will-trumps-plans-to-cut-the-trade-deficit-help-the-economy</u>
- Tower, E., & Ye, V. Y. (2016). How Taxes and Real Wage Inflexibility Interact to Make Trade Deficits Addictive: The Tertiary and Quaternary Burdens and Benefits of a Transfer. *The Singapore Economic Review*, 61(2), 1640026th ser. doi:10.1142/S0217590816400269
- Williamsen, K. (2015, March 11). So I'm Told Trade Deficits Are Good. Retrieved October 16, 2017, from <u>https://www.thenewamerican.com/economy/economics/item/20341-so-i-m-told-trade-deficits-are-good</u>
- Worstall, T. (2015, April 30). The Trade Deficit Doesn't Cause Unemployment. Retrieved October 16, 2017, from <u>https://www.forbes.com/sites/timworstall/2015/04/30/the-trade-deficit-doesnt-cause-unemployment/#1e681b2a378f</u>
- Yavuz, N. C., Güri§, B., & Kiran, B. (2008). The Month and Holy Days Effects on the Volatility of Trade Deficit: Evidence from Turkey. *Journal of Economic and Social Research*, 10(2), 67-84.
- Yue, K. and Zhang, K. (2013). How Much Does China's Exchange Rate Affect the U.S. Trade Deficit? . *The Chinese Economy*, 46(6), 80-93

Vol. 3, No. 03; 2019

ISSN: 2456-7760

APPENDIX

STATIONARITY TESTS

. dfuller tdef

Dickey-Fuller test for unit root Number of obs = 36

			Inte	rpolated Dickey-Ful	ler	
	Test		Critical			Critical
	Statistic		Value	Value		Value
Z(t)	-1.078		-3.675	-2.969		-2.61
MacKinnon ap	proximate p-valu	e for	Z(t) = 0.723	6		
. gen dtdef= (1 missing v	d.tdef value generated)					
. dfuller dt	def					
Dickey-Fulle	er test for unit	root		Number of obs	=	3
			Inte	rpolated Dickey-Ful	ler	
	Test	1%	Critical	5% Critical	10%	Critica
	Statistic		Value	Value		Value
Z(t)	-5.547		-3.682	-2.972		-2.61
MacKinnon ap	proximate p-valu	e for	Z(t) = 0.000	0		
-		e for	Z(t) = 0.000	0		
. dfuller pb	odt		Z(t) = 0.000		_	2
. dfuller pb			Z(t) = 0.000	0 Number of obs	=	3
. dfuller pb	odt					
. dfuller pb	odt er test for unit Test	root	Inte Critical	Number of obs Prolated Dickey-Ful 5% Critical	ler	
. dfuller pb	odt er test for unit	root	Inte	Number of obs rpolated Dickey-Ful	ler	34 Critical Value
. dfuller pb	odt er test for unit Test	root	Inte Critical	Number of obs Prolated Dickey-Ful 5% Critical	ler	Critical
. dfuller pb Dickey-Fulle Z(t)	odt er test for unit Test Statistic	root 1%	Inte Critical Value -3.675	Number of obs rpolated Dickey-Ful 5% Critical Value -2.969	ler	Critical Value
. dfuller ph Dickey-Fulle Z(t) MacKinnon ap	r test for unit Test Statistic 5.625 proximate p-valu	root 1%	Inte Critical Value -3.675	Number of obs rpolated Dickey-Ful 5% Critical Value -2.969	ler	Critical Value
. dfuller pt Dickey-Fulle 	r test for unit Test Statistic 5.625 pproximate p-valu	root 1% e for	Inte Critical Value -3.675	Number of obs rpolated Dickey-Ful 5% Critical Value -2.969 0	ler 10%	Critical Value -2.61
. dfuller pt Dickey-Fulle 	r test for unit Test Statistic 5.625 proximate p-valu	root 1% e for	Inte Critical Value -3.675	Number of obs rpolated Dickey-Ful 5% Critical Value -2.969	ler 10%	Critical Value -2.61
. dfuller pt Dickey-Fulle 	Test for unit Test Statistic 5.625 pproximate p-valu upbdt er test for unit	root 1% e for root	Inte Critical Value -3.675 Z(t) = 1.000 Inte	Number of obs rpplated Dickey-Ful 5% Critical Value -2.969 0 Number of obs rpplated Dickey-Ful	ler 10% 	Critica Value -2.61
. dfuller pt Dickey-Fulle 	r test for unit Test Statistic 5.625 proximate p-valu upbdt tr test for unit Test	root 1% e for root	Inte Critical Value -3.675 Z(t) = 1.000 Inte Critical	Number of obs rpolated Dickey-Ful 5% Critical Value -2.969 0 Number of obs rpolated Dickey-Ful 5% Critical	ler 10% 	Critica Value -2.61 3 Critica
. dfuller pt Dickey-Fulle 	Test for unit Test Statistic 5.625 pproximate p-valu upbdt er test for unit	root 1% e for root	Inte Critical Value -3.675 Z(t) = 1.000 Inte	Number of obs rpplated Dickey-Ful 5% Critical Value -2.969 0 Number of obs rpplated Dickey-Ful	ler 10% 	Critical Value -2.61

MacKinnon approximate p-value for Z(t) = 0.0197

www.ijebmr.com

Page 70

Vol. 3, No. 03; 2019

ISSN: 2456-7760

Dickey-Fulle:	r test for unit r	coot		Number of obs	-	3
				erpolated Dickey-Ful		
	Test Statistic	1%	Critical Value	5% Critical Value	10%	Critica Value
Z(t)	-1.420		-3.675	-2.969		-2.61
MacKinnon app	proximate p-value	e for	Z(t) = 0.572	29		
. gen dintr=d (1 missing va	d.intr alue generated)					
. dfuller dir	ntr					
Dickey-Fulle:	r test for unit :	coot		Number of obs	-	3
			Inte	erpolated Dickey-Ful	ler	
	Test	1%	Critical	5% Critical	10%	Critica
			Value			Value
	Statistic		vaiue	Value		varue
Z(t)	-5.940		-3.682	-2.972		
		e for	-3.682	-2.972		
MacKinnon app	-5.940 proximate p-value	e for	-3.682	-2.972		
MacKinnon app	-5.940 proximate p-value		-3.682	-2.972	_	-2.61
MacKinnon app	-5.940 proximate p-value aloilprices r test for unit r	root	-3.682 Z(t) = 0.000	-2.972 DO Number of obs	ler	-2.61
MacKinnon app	-5.940 proximate p-value aloilprices	root	-3.682 Z(t) = 0.000	-2.972	ler	-2.61
MacKinnon app	-5.940 proximate p-value aloilprices r test for unit r Test	root	-3.682 Z(t) = 0.000 Critical	-2.972 Number of obs Perpolated Dickey-Ful 5% Critical	ler	-2.61 3 Critica
MacKinnon app . dfuller rea Dickey-Fuller Z(t)	-5.940 proximate p-value aloilprices r test for unit : Test Statistic	:oot 	-3.682 Z(t) = 0.000 Critical Value -3.675	-2.972 Number of obs prolated Dickey-Ful 5% Critical Value -2.969	ler	-2.61 3 Critica Value
MacKinnon app . dfuller rea Dickey-Fuller Z(t) MacKinnon app . gen drealo:	-5.940 proximate p-value aloilprices r test for unit : Test Statistic -1.913	1%	-3.682 2(t) = 0.000 Critical Value -3.675 2(t) = 0.325	-2.972 Number of obs prolated Dickey-Ful 5% Critical Value -2.969	ler	-2.61 3 Critica Value
MacKinnon app . dfuller rea Dickey-Fuller Z(t) MacKinnon app . gen drealo (1 missing va	-5.940 proximate p-value aloilprices r test for unit + Test Statistic -1.913 proximate p-value ilprices- d.realc ilu generated)	1%	-3.682 2(t) = 0.000 Critical Value -3.675 2(t) = 0.325	-2.972 Number of obs prolated Dickey-Ful 5% Critical Value -2.969	ler	-2.61 3 Critica Value
MacKinnon app . dfuller rea Dickey-Fuller Z(t) MacKinnon app . gen drealo:	-5.940 proximate p-value aloilprices r test for unit + Test Statistic -1.913 proximate p-value ilprices- d.realc ilu generated)	1%	-3.682 2(t) = 0.000 Critical Value -3.675 2(t) = 0.325	-2.972 Number of obs prolated Dickey-Ful 5% Critical Value -2.969	ler 10%	-2.61 3 Critica Value -2.61

 Interpolated Dickey-Fuller

 Test
 1% Critical
 5% Critical
 10% Critical

 Statistic
 Value
 Value
 Value

 Z(t)
 -5.574
 -3.682
 -2.972
 -2.618

 MacKinnon approximate p-value for Z(t)
 = 0.0000
 = 0.0000
 = 0.0000

Vol. 3, No. 03; 2019

ISSN: 2456-7760

	er test for unit	root		Number of obs -	36
			Inte	erpolated Dickey-Fuller	
	Test Statistic	1%	Critical Value	5% Critical 10 Value	% Critical Value
Z(t)	1.444		-3.675	-2.969	-2.617
MacKinnon a	pproximate p-valu	e for	$Z(t) = 0.99^{\circ}$	73	
. gen dgvex					
. dfuller d	lgvexp				
Dickey-Full	er test for unit	root		Number of obs =	
	Test	1%			% Critical
	Statistic		Value	Value	Value
Z(t)	-3.072		-3.682	-2.972	-2.618
MacKinnon a	pproximate p-valu	e for	Z(t) = 0.028	87	
. dfuller 1	nfdi				
Dickey-Full	er test for unit	root		Number of obs -	31
		_	Inte	erpolated Dickey-Fuller	
	Test Statistic	1%			% Critical Value
Z(t)	-1.366		-3.675	-2.969	-2.61
. gen dlnfd (1 missing	value generated)	e for	Z(t) = 0.598	85	
. gen dlnfd (1 missing . dfuller d	i=d.lnfdi value generated)		Z(t) = 0.598	Number of obs -	35
. gen dlnfd (1 missing . dfuller d	li=d.lnfdi value generated) llnfdi			Number of obs =	
. gen dlnfd (1 missing . dfuller d	li-d.lnfdi value generated) llnfdi er test for unit Test	root	Inte Critical	Number of obs - erpolated Dickey-Fuller 5% Critical 10	% Critical
. gen dlnfd (1 missing . dfuller d	i-d.lnfdi value generated) (lnfdi er test for unit Test Statistic	root	Critical Value	Number of obs = erpolated Dickey-Fuller 5% Critical 10 Value	% Critical Value
. gen dlnfd (1 missing . dfuller d	li-d.lnfdi value generated) llnfdi er test for unit Test	root	Inte Critical	Number of obs - erpolated Dickey-Fuller 5% Critical 10	% Critical Value
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t)	i-d.lnfdi value generated) (lnfdi er test for unit Test Statistic	root 1%	Critical Value -3.682	Number of obs - erpolated Dickey-Fuller 5% critical 10 Value -2.972	% Critical Value
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a	i-d.lnfdi value generated) llnfdi er test for unit Test Statistic -6.392 pproximate p-valu	root 1%	Critical Value -3.682	Number of obs - erpolated Dickey-Fuller 5% critical 10 Value -2.972	% Critical Value
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p	i-d.lnfdi value generated) llnfdi er test for unit Test Statistic -6.392 pproximate p-valu	root 1% e for	Critical Value -3.682	Number of obs - erpolated Dickey-Fuller 5% critical 10 Value -2.972	<pre>% Critical Value -2.618</pre>
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p	i-d.lnfdi value generated) llnfdi er test for unit Test Statistic -6.392 pproximate p-valu savert er test for unit	root 1% e for root	Critical Value -3.682 Z(t) = 0.000	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller	* Critical Value -2.618 34
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p	i-d.lnfdi value generated) llnfdi er test for unit Test Statistic -6.392 pproximate p-valu savert	root 1% e for root	Critical Value -3.682 Z(t) = 0.000	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller	* Critical Value -2.618 34
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p	i-d.lnfdi value generated) llnfdi er test for unit <u>Test</u> statistic -6.392 pproximate p-valu savert er test for unit Test	root 1% e for root	Critical Value -3.682 Z(t) = 0.000 Inte Critical	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10	Critical Value -2.618 36 % Critical Value
. gen dinfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p Dickey-Full Z(t)	i-d.lnfdi value generated) llnfdi er test for unit <u>Test</u> Statistic -6.392 ppproximate p-valu savert er test for unit <u>Test</u> Statistic -2.579	root 1% e for root 1%	Critical -3.682 Z(t) = 0.000 Critical Value -3.675	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.969	<pre>% Critical Value -2.618 36 % Critical Value</pre>
. gen dlnfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a Z(t) Z(t) MacKinnon a	i-d.lnfdi value generated) llnfdi er test for unit Test Statistic -6.392 pproximate p-valu savert er test for unit Test Statistic -2.579 pproximate p-valu	root 1% e for root 1%	Critical -3.682 Z(t) = 0.000 Critical Value -3.675	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.969	<pre>% Critical Value -2.618 36 % Critical Value</pre>
. gen dinfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p Dickey-Full Z(t) MacKinnon a . gen dpsav (1 missing	i-d.lnfdi value generated) llnfdi er test for unit <u>Test</u> Statistic -6.392 pproximate p-valu savert er test for unit <u>Test</u> Statistic -2.579 pproximate p-valu ert-d.psavert value generated)	root 1% e for root 1%	Critical -3.682 Z(t) = 0.000 Critical Value -3.675	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.969	<pre>% Critical Value -2.618 36 % Critical Value</pre>
. gen dinfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p Dickey-Full Z(t) MacKinnon a . gen dpsav (1 missing	i-d.lnfdi value generated) llnfdi er test for unit <u>Test</u> Statistic -6.392 pproximate p-valu savert er test for unit <u>Test</u> Statistic -2.579 pproximate p-valu ert-d.psavert value generated)	root 1% e for root 1%	Critical -3.682 Z(t) = 0.000 Critical Value -3.675	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.969	<pre>% Critical Value -2.618 36 % Critical Value</pre>
. gen dinfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p Dickey-Full Z(t) MacKinnon a . gen dpsav (1 missing . dfuller d	i-d.lnfdi value generated) llnfdi er test for unit <u>Test</u> Statistic -6.392 pproximate p-valu savert er test for unit <u>Test</u> Statistic -2.579 pproximate p-valu ert-d.psavert value generated)	root 1% e for root 1% e for	Critical -3.682 Z(t) = 0.000 Critical Value -3.675	Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.969	<pre>% Critical Value -2.618 % Critical Value -2.617</pre>
. gen dinfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p Dickey-Full Z(t) MacKinnon a . gen dpsav (1 missing . dfuller d	i-d.lnfdi value generated) llnfdi er test for unit <u>Test</u> statistic -6.392 pproximate p-valu savert er test for unit <u>Test</u> statistic -2.579 pproximate p-valu ert-d.psavert value generated) spavert er test for unit	root 1% e for 1% e for root	Critical Value -3.682 Z(t) = 0.000 Critical Value -3.675 Z(t) = 0.097	Number of obs = erpolated Dickey-Fuller 5% Critical 10 Value -2.972 00 Number of obs = erpolated Dickey-Fuller 5% Critical 10 Value -2.969 74 Number of obs = erpolated Dickey-Fuller	Critical Value -2.610 30 Critical Value -2.611 31 31 31 31 31 31 31 31 31 31 31 31 3
. gen dinfd (1 missing . dfuller d Dickey-Full Z(t) MacKinnon a . dfuller p Dickey-Full Z(t) MacKinnon a . gen dpsav (1 missing . dfuller d	i-d.lnfdi value generated) llnfdi er test for unit Test Statistic -6.392 ppproximate p-valu savert er test for unit Test Statistic -2.579 ppproximate p-valu ert-d.psavert value generated) ppavert	root 1% e for 1% e for root	Critical Value -3.682 Z(t) = 0.000 Critical Value -3.675 Z(t) = 0.097	Number of obs - erpolated Dickey-Fuller 5% critical 10 -2.972 00 Number of obs - erpolated Dickey-Fuller 5% Critical 10 Value -2.969 74 Number of obs -	Critical Value -2.618 36 Critical Value -2.611 38 38 38 38 38 38 38 38 38 38 38 38 38

Vol. 3, No. 03; 2019

ISSN: 2456-7760

Dickey-Ful	ler test for unit	root	Number of obs	=	36
	Test Statistic		erpolated Dickey-Ful 5% Critical Value	10% 0	Critical Value
Z(t)	-1.607	-3.675	-2.969		-2.617
. gen dbde (1 missing	value generated)				
. gen dbde (1 missing . dfuller	f=d.bdef value generated)		Number of obs	=	35
. gen dbde (1 missing . dfuller	f=d.bdef value generated) dbdef	root			35
. gen dbde (1 missing . dfuller	f=d.bdef value generated) dbdef	root Inte	Number of obs	ler — 10% (

MacKinnon approximate p-value for Z(t) = 0.0006

Cointegration and Endogeneity tests for model 1

Vol. 3, No. 03; 2019

ISSN: 2456-7760

. reg unemp td	er pour intr					
Source	SS	df	MS		Number of obs -	
					F(7, 29)	
Model	82.0625014		11.7232145			0.0000
Residual	11.0423119	29	.380769377		R-squared -	
Total	93.1048133	26	2.58624481		Adj R-squared = Root MSE =	0.8528
Iocui	55.1040155	50	2.00024401		NOOC HOL	.01/07
unemp	Coef.	Std.	Err. t	P> t	[95% Conf.	Interval
tdef	1.42e-06	1.26e		.3 0.269		4.00e-0
pbdt	0000142			8 0.781		.000089
intr	.0104512	.1104		0.925	2153428	.236245
realoilprices	.0192608	.0068	673 2.8	0.009	.0052155	.033306
lnfdi	8674027		709 -3.3			341594
psavert	0647004	.0879	817 -0.7	4 0.468	2446432	.115242
bdef	0030714	.000	464 -6.6	2 0.000	0040204	002122
-cons	27.11764	6.214	785 4.3	0.000	14.40698	39.828
. dfuller u Dickey-Fuller	test for unit	root	Int		per of obs = Dickey-Fuller -	36
	Test	1%	Critical	5% Cr	itical 10%	Critical
	Statistic		Value	V	alue	Value
Z(t)	-3.923		-3.675		-2.969	-2.617
MacKinnon appr . reg tdef pbd	t intr realoi	lprices	lnfdi psav			
. reg tdef pbd Source	t intr realoi SS	lprices df	MS		Number of obs = F(6, 30) =	38.52
. reg tdef pbd Source Model	t intr realoi SS 1.8457e+12	lprices df 6	MS 3.0762e+11		F(6, 30) Prob > F	38.52 0.0000
. reg tdef pbd Source	t intr realoi SS	lprices df 6	MS		F(6, 30) - Prob > F - R-squared -	38.52 0.0000 0.8851
. reg tdef pbd Source Model	t intr realoi SS 1.8457e+12	lprices df 6 30	MS 3.0762e+11	vert bdef	F(6, 30) Prob > F	38.52 0.0000 0.8851 0.8621
. reg tdef pbd Source Model Residual	t intr realoi SS 1.8457e+12 2.3955e+11	df df 30 36	MS 3.0762e+11 7.9850e+09 5.7924e+10	vert bdef	F(6, 30) - Prob > F - R-squared - Adj R-squared - Root MSE -	38.52 0.0000 0.8851 0.8621 89359
. reg tdef pbd Source Model Residual Total tdef	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef.	lprices df 6 30 36 Std.	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t	rert bdef	F(6, 30) Prob > F R-squared Adj R-squared Root MSE [95% Conf.	38.52 0.0000 0.8851 0.8621 89359 Interval
. reg tdef pbd Source Model Residual Total tdef pbdt	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef. 15.49763	lprices df 6 30 36 5td. 6.765	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.2	<pre>rert bdef : P> t : P> t : 9 0.029</pre>	F(6, 30) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 1.680717	38.52 0.0000 0.8851 0.8621 89359 Interval
. reg tdef pbd Source Model Residual Total tdef pbdt intr	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08	lprices df 6 30 36 Std. 6.765 12656	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.2 .46 4.2	<pre>rert bdef</pre>	F(6, 30) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 1.680717 27652.15	38.52 0.0000 0.8851 0.8621 89359 Interval 29.3145 79348.0
. reg tdef pbd Source Model Residual Total tdef pbdt intr realoilprices	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 -3965.227	lprices df 6 30 36 5td. 6.765 12656 681.8	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. tt 459 2.2 i.46 4.2 212 -5.8	P> t P> t 9 0.029 13 0.000 2 0.001	F(6, 30) Prob > F R-squared Adj R-squared Root MSE (95% Conf. 1.680717 27652.15 -5357.692	38.52 0.0000 0.8851 0.8621 89359 Interval 29.3145 79348.0 -2572.76
. reg tdef pbd Source Model Residual Total tdef pbdt intr	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106559.4	lprices df 6 30 36 5td. 6.765 12656 681.8 3174	Infdi psav MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.2 2.1 -3.3	P> t P> t 9 0.029 3 0.000 12 0.000 16 0.002	F(6, 30) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 1.680717 27652.15 -5357.692 -171385.4	38.52 0.0000 0.8851 0.8621 89359 Interval 29.3145 79348.0 -2572.76 -41733.3
. reg tdef pbd Source Model Residual Total tdef tdef intr realoilprices Infdi psaveri	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 53965.227 -106559.4 37377.99	lprices df 6 30 36 5td. 6.765 12656 681.8 3174 10759	Infdi psav MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. C .459 2.12 .5.8 2.11 .3.4	<pre>rert bdef rert bdef r</pre>	F(6, 30) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 1.680717 27652.15 -5357.692 -171385.4 15404.95	- 38.52 - 0.0000 - 0.8851 - 89359 - 89359 - 1000 - 2572.76 - 41733.3 59351.0
. reg tdef pbd Source Model Residual Total tdef pbdt intr realoilprices lnfdi	t intr realoi SS 1.8457e+12 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106559.4	lprices df 6 30 36 5td. 6.765 12656 681.8 3174	Infdi psav MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. 459 2.2 .46 212 -5.8 2.1 .3.3 .11 .254	<pre>rert bdef rert bdef r</pre>	F(6, 30) Prob > F R-squared Adj R-squared [95% Conf. 1.680717 27652.15 -5357.692 -171385.4 15404.95 -190.2634	38.52 0.0000 0.8851 0.8621 89359 Interval 29.3145 79348.0 -2572.76 -41733.3 59351.0 81.1650
. reg tdef pbd Source Model Residual Total tdef pbdt realoilprices lnfdi psavert bdef cons	t intr realoi SS 1.8457e12 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106555.4 37377.99 -54.54918 37377.99 -54.54918 appl.792 esiduals	lprices df 6 30 36 5td. 6.765 12656 681.8 3174 10759 66.45	Infdi psav MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. 459 2.2 .46 212 -5.8 2.1 .3.3 .11 .254	<pre>rert bdef rert bdef r</pre>	F(6, 30) Prob > F R-squared Adj R-squared [95% Conf. 1.680717 27652.15 -5357.692 -171385.4 15404.95 -190.2634	- 38.52 - 0.0000 - 0.8851 - 0.8621 - 89359 - 1000 - 29.3145 - 79348.0 - 2572.76 - 41733.3 59351.0 81.1650
. reg tdef pbd Source Model Residual Total tdef pbdt intr realollprices bdef . predict v, r	t intr realoi SS 1.8457e112 2.3955e+111 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106559.4 37377.99 -54.54918 1991792 esiduals ef v	lprices df 6 30 36 5td. 6.765 12656 681.8 3174 10759 66.45 82323	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.2 245 2.2 212 - 5.8 1.1 3.4 264 - 2.4 6.6,2 2.4	<pre>rert bdef</pre>	F(6, 30) Prob > F Prob > F R-squared Adj R-squared (95% Conf. 1.680717 27652.15 -5357.632 -171385.4 15404.95 -190.2634 310519.8	38.52 0.0000 0.8851 0.8621 29.3145 79348.0 -2572.76 -41733.3 59351.0 81.1650 367306
, reg tdef pbd Source Residual Total tdef pbdt trealollprices lnfdi psävert cons . predict v, r . reg unemp td Source	t intr realoi SS 1.8457e112 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106555.4 37377.99 -54.54918 1991792 esiduals ef v SS	df 6 30 36 5td. 6.765 681.8 3174 10759 66.45 82323 df	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.22 212 - 5.8 1.11 3.4 254 - 0.6 6.6.2 2.4 MS	<pre>rert bdef</pre>	F(6, 30) - Prob > F Prob > F R-squared - Adj R-squared - Root MSE (95% Conf. 1.680717 27652.15 -5357.632 -171385.4 15404.95 -1910.2634 310519.8 Number of obs - F(2, 34) -	- 38.52 - 0.0000 - 0.8851 - 0.8621 - 89359 Interval 29.3145 79348.0 -2572.76 -41733.3 59351.0 81.1650 367306 - 377 - 0.92
. reg tdef pbd Source Model Residual Total tdef pbdt intr realollprices bdef . predict v, r	t intr realoi SS 1.8457e112 2.3955e+111 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106559.4 37377.99 -54.54918 1991792 esiduals ef v	df 6 30 36 5td. 6.765 12656 681.8 3174 10759 66.45 82323 df 2	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.2 245 2.2 212 - 5.8 1.1 3.4 264 - 2.4 6.6,2 2.4	<pre>rert bdef</pre>	F(6, 30) Prob > F R-squared Adj R-squared (95% Conf. 1.680717 27652.15 -5357.632 -171385.4 15404.95 -190.2634 310519.8 Number of obs F(2, 34) Prob > F R-squared	- 38.52 - 0.0000 - 0.8851 - 0.8621 - 0.8621 - 29.3145 79348.0 - 41733.3 59351.0 81.1650 367306 - 377 - 0.92 - 0.4094 - 0.0512
. reg tdef pbd Source Model Residual Total pbdt intr pavert bdef cons . predict v, r . reg unemp td Source Model	t intr realoi <u>SS</u> 1.8457e+12 2.3955e+11 2.0852e+12 <u>Coef</u> 15.49763 5360.08 -3965.227 -10655.4 3777.99 -54.54918 1991792 esiduals ef v <u>SS</u> 4.7649365 88.3398768	df 6 30 36 8 5td. 6.765 12656 681.8 3174 10759 6631.8 3174 10759 62323 df 2 34	Mark 1 Ma	<pre>rert bdef</pre>	F(6, 30) + Prob > F R-squared - Adj R-squared - Root MSE - (95% Conf. 1.680717 27652.15 -5337.692 -171385.4 15404.95 -190.2634 310519.8 Number of obs - F(2, 34) - F(2, 34) - R-squared - Adj R-squared	- 38.52 - 0.0000 - 0.8851 - 0.8851 - 0.8851 - 0.8859 Interval 29.3145 79348.00 -2572.76 -41733.3 59351.00 81.1650 367306 - 0.92 - 0.4094 - 0.0512 - 0.00512
. reg tdef pbd Source Model Residual Total tdef pbdt intr pavert bdef cons . predict v, r . reg unemp td Source Model Residual	t intr realoi SS 1.8457e112 2.3955e+11 2.0852e+12 Coef. 15.49763 53500.08 -3965.227 -106555.4 39377.99 -54.54918 1991792 esiduals ef v SS 4.7649365 8.3399768 93.1048133	df 6 30 36 8 5td. 6.765 12656 681.8 3174 10759 6631.8 3174 10759 62323 df 2 34	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 459 2.2 212 -5.8 2.1 -3.3 11 3.4 22.38246825 2.59823167 2.58624481	<pre>rert bdef</pre>	F(6, 30) + Prob > F R-squared - Adj R-squared - Root MSE - (95% Conf. 1.680717 27652.15 -5337.692 -171385.4 15404.95 -190.2634 310519.8 Number of obs - F(2, 34) - F(2, 34) - R-squared - Adj R-squared	- 38.52 - 0.0000 - 0.8851 - 89359 Interval 29.3145 79348.0 -2572.76 -41733.3 53551.0 81.1650 367306 - 0.92 - 0.92 - 0.4094 - 0.0512 - 0.0404 - 1.6119
. reg tdef pbd Source Model Residual Total tdef pbdt intr realoilprices lnfdi psavert bdef cons . predict v, r . reg unemp td Source Model Residual Total	t intr realoi <u>SS</u> 1.8457e+12 2.3955e+11 2.0852e+12 <u>Coef</u> . 15.49763 5360.08 -3965.227 -106559.4 1991792 esiduals ef v <u>SS</u> 4.7649365 88.3398768 93.1048133 <u>Coef</u> . 1.52e-06	lprices df 6 30 36 5td. 6.7655 661.8 3174 10759 66.455 82333 df 2 34 36 5td. E 1.19=	Infdi paw MS 3.0762±11 7.9850±09 5.7924±10 Err. t t459 2.2 11 3.4 254 -0.6 66.2 2.4 MS 2.38246825 2.38246825 2.59833167 2.58624481 crr. t trr. t t	Pret bdef	F(6, 30) Prob > F R-squared Adj R-squared Root MSE (95% Conf. 1.660717 27653.15 -5357.692 -171385.4 15404.95 -190.2634 310519.8 Number of obs F(2, 34) R-squared Root MSE (95% Conf. 2 -8.88e-07	- 38.52 - 0.0000 - 0.8851 - 89359 Interval 29.3145 79346.0 -2572.76 35351.0 367306 - 37 - 0.92 - 0.4094 - 0.092 - 0.4094 - 0.092 - 0.4094 - 0.512 - 0.0012 - 0.012 - 0.0012 - 0
. reg tdef pbd Source Model Residual Total tdef pbdt intr cealoilprices lnfdi psavert bdef cons . predict v, r . reg unemp td Source Residual Total unemp	t intr realoi <u>SS</u> 1.8457e+12 2.3955e+11 2.0852e+12 <u>Coef</u> . 15.49763 5360.08 -3965.227 -106559.4 1991792 esiduals ef v <u>SS</u> 4.7649365 88.3398768 93.1048133 <u>Coef</u> . 1.52e-06	lprices df 6 6 30 36 5td. 6.765 12656 661.8 3174 1075 66.45 82323 df 2 34 36 5td. E 5td. 5 5 5 5 5 5 5 5 5 5 5 5 5	MS 3.0762e+11 7.9850e+09 5.7924e+10 Err. t 4459 2.2 212 -5.8 2.1 -3.3 3.11 3.4 2.24 -5.8 2.424 -2.4 MS 2.38246825 2.59823167 2.58624481 rrr. t 066 1.28 066 -10.28	<pre>rert bdef</pre>	F(6, 30) Prob > F Prob > F Prob > F Prob > F R-squared Adj R-squared (95% Conf. 1.680717 27652.15 -5357.632 -171385.4 15404.95 -190.2634 310519.8 Number of obs F(2, 34) Prob > F R-squared Adj R-squared Root MSE (95% Conf. 1 (95% Conf. 1	- 38.52 - 0.0000 - 0.8851 - 89359 Interval 29.3145 79348.0 -2572.76 -41733.3 53551.0 81.1650 367306 - 0.92 - 0.92 - 0.4094 - 0.0512 - 0.0404 - 1.6119

ARDL RESULTS

. ardl unemp tdef pbdt lnfdi, aic

ARDL regression Model: level

 Sample:
 1984
 2016

 Number of obs
 = 33

 Log likelihood
 = -1.9464512

 R-squared
 = .9676711

 Adj R-squared
 = .95073691

 Root MSE
 = .32175574

Vol. 3, No. 03; 2019

ISSN: 2456-7760

unemp	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
unemp						
L1.	.6096066	.1097378	5.56	0.000	.3813943	.8378189
tdef						
	2.71e-06	9.87e-07	2.74	0.012	6.55e-07	4.76e-06
L1.	-3.23e-06	1.22e-06	-2.65	0.015	-5.77e-06	-6.93e-07
L2.	1.45e-06	1.14e-06	1.27	0.219	-9.30e-07	3.83e-06
pbdt						
	.0014067	.0002742	5.13	0.000	.0008364	.001977
L1.	0002785	.0004256	-0.65	0.520	0011635	.0006065
L2.	0020352	.000582	-3.50	0.002	0032455	0008249
L3.	.0008341	.0003808	2.19	0.040	.0000422	.001626
lnfdi						
	5639011	.1772945	-3.18	0.005	9326052	1951969
L1.	.1809109	.227224	0.80	0.435	2916273	.653449
L2.	.4290785	.164886	2.60	0.017	.0861793	.7719778
_cons	1.102921	5.384099	0.20	0.840	-10.09393	12.29977

. ardl unemp tdef pbdt lnfdi, aic ec regstore(ecreg)

ARDL regression Model: ec

Sample: 1984 - 2016 Number of obs = 33 Log likelihood = -1.9464512 R-squared = .9252019 Adj R-squared = .68602195 Root MSE = .32175574

	D.unemp	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
ADJ							
	unemp						
	L1.	3903934	.1097378	-3.56	0.002	6186057	1621811
LR							
	tdef	2.37e-06	1.42e-06	1.67	0.109	-5.78e-07	5.31e-06
	pbdt	0001868	.0001017	-1.84	0.080	0003983	.0000247
	lnfdi	.1180562	.5449058	0.22	0.831	-1.015138	1.25125
SR							
	tdef						
	D1.	1.78e-06	1.11e-06	1.61	0.123	-5.24e-07	4.09e-06
	LD.	-1.45e-06	1.14e-06	-1.27	0.219	-3.83e-06	9.30e-07
	pbdt						
	D1.	.0014796	.0002729	5.42	0.000	.0009121	.0020471
	LD.	.0012011	.0003513	3.42	0.003	.0004705	.0019317
	L2D.	0008341	.0003808	-2.19	0.040	001626	0000422
	lnfdi						
	D1.	6099894	.1955855	-3.12	0.005	-1.016732	2032472
	LD.	4290785	.164886	-2.60	0.017	7719778	0861793
	_cons	1.102921	5.384099	0.20	0.840	-10.09393	12.29977

Vol. 3, No. 03; 2019

ISSN: 2456-7760

. ardl, noctable btest

ARDL regression Model: ec

Sample: 1984 - 2016 Number of obs = 33 Log likelihood = -1.9464512 R-squared = .9252019 Adj R-squared = .88602195 Root MSE = .32175574

Pesaran/Shin/Smith (2001) ARDL Bounds Test H0: no levels relationship F = 7.790 t = -3.558

Critical Values (0.1-0.01), F-statistic, Case 3

		[I_!	0] L_1	[I_1] L_1	[I_ L	0] _05	[I_1 L_) 05	[I_0] L_025	[I_1] L_025	[I_0] L_01	[I_1] L_01
k_	3		2	.72	3.77	3	.23	4.	35	3.69	4.89	4.29	5.61
acce	pt	if	F	<	critical	value	for	I(0)	reg	gressors			
reie	ct	if	F	>	critical	value	for	I(1)	red	ressors			

Critical Values (0.1-0.01), t-statistic, Case 3

	[I_0] L_1	[I_1] L L_1	[I_0] L_05	[I_1] L_05	[I_0] L_025	[I_1] L_025	[I_0] L_01	[I_1] L_01
k_3	-2.51	7 -3.46	-2.86	-3.78	-3.13	-4.05	-3.43	-4.37
accept	if t $>$	critical	value for	I(0) rec	gressors			
reject	if t <	critical	value for	I(1) reg	gressors			

k: # of non-deterministic regressors in long-run relationship Critical values from Pesaran/Shin/Smith (2001)

. estimates restore ecreg (results ecreg are active now)

. regress

Source	SS	df	MS		Number of obs F(11, 21)	
Model	26.8916752	11 2.44	469775		Prob > F	= 0.0000
Residual	2.17406184	21 .103	526754		R-squared	= 0.9252
					Adj R-squared	
Total	29.0657371	32 .908	304283		Root MSE	= .32176
D.unemp	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
unemp						
L1.	3903934	.1097378	-3.56	0.002	6186057	1621811
tdef	9.24e-07	5.42e-07	1.70	0.103	-2.04e-07	2.05e-06
pbdt	0000729	.0000311	-2.35	0.029	0001376	-8.27e-06
lnfdi	.0460884	.2030769	0.23	0.823	3762331	.4684098
tdef						
D1.	1.78e-06	1.11e-06	1.61	0.123	-5.24e-07	4.09e-06
LD.	-1.45e-06	1.14e-06	-1.27	0.219	-3.83e-06	9.30e-07
pbdt						
D1.	.0014796	.0002729	5.42	0.000	.0009121	.0020471
LD.	.0012011	.0003513	3.42	0.003	.0004705	.0019317
L2D.	0008341	.0003808	-2.19	0.040	001626	0000422
			2.125	0.010	.001020	
lnfdi						
D1.	6099894	.1955855	-3.12	0.005	-1.016732	2032472
LD.	4290785	.164886	-2.60	0.017	7719778	0861793
_cons	1.102921	5.384099	0.20	0.840	-10.09393	12.29977

POST ESTIMATION TESTS FOR ARDL

Vol. 3, No. 03; 2019

ISSN: 2456-7760

. estat dwatson

Durbin-Watson d-statistic(12, 33) = 1.54374

. estat bgodfrey

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	2.170	1	0.1407

HO: no serial correlation

. estat archlm

 ${\tt LM}$ test for autoregressive conditional heterosked asticity (ARCH)

lags(p)	chi2	df	Prob > chi2
1	0.003	1	0.9588

H0: no ARCH effects vs. H1: ARCH(p) disturbance

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of D.unemp

```
chi2(1) = 0.06
Prob > chi2 = 0.8094
```

. estat ovtest

Ramsey RESET test using powers of the fitted values of D.unemp Ho: model has no omitted variables F(3, 18) = 2.49Prob > F = 0.0933

Cointegration and Endogeneity tests for model 2

Vol. 3, No. 03; 2019

ISSN: 2456-7760

Source	SS	df	MS		Number of obs	- 37
					F(4, 32)	
Model	22.3116606		5.57791514			- 0.0000
Residual	4.36205275	32	.136314149			- 0.8365
Total	26.6737133	36	.740936481		Adj R-squared Root MSE	= 0.8160 = .36921
TOTAL	20.0/3/133	20	./40936481		ROOT MSE	= .36921
lnpbdt	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]
tdef		4.48e-		0.490	-1.23e-06	6.00e-07
intr	1718936	.05005		0.002	2738496	0699376
psavert bdef	1489033 0005095	.03437		0.000	2189204 001011	0788863
_cons	10.07075	.4429		0.000	9.168455	10.97305
predict u, dfuller u						
ickey-Fuller	test for unit	root			ber of obs =	
	Test	1%	Critical		Dickey-Fuller itical 10	t Critical
	Statistic		Value	v	alue	Value
Z(t)	-3.552		-3.675		-2.969	-2.617
	roximate p-val tr psavert bde		Z(t) = 0.0068 MS	3	Number of obs	- 37
reg tdef in Source	tr psavert bde	df	MS	3	F(3, 33)	= 22.80
reg tdef in	ss 1.4067e+12	df		3	F(3, 33)	= 22.80 = 0.0000
reg tdef in Source Model Residual	tr psavert bde SS 1.4067e+12 6.7857e+11	df 3 33	MS 4.6889e+11 2.0563e+10	3	F(3, 33) Prob > F R-squared Adj R-squared	= 22.80 = 0.0000 = 0.6746 = 0.6450
reg tdef in Source Model	ss 1.4067e+12	df 3 33	MS 4.6889e+11	3	F(3, 33) Prob > F R-squared	= 22.80 = 0.0000 = 0.6746 = 0.6450
reg tdef in Source Model Residual	tr psavert bde SS 1.4067e+12 6.7857e+11	df 3 33	MS 4.6889e+11 2.0563e+10 5.7924e+10	9 P> t	F(3, 33) Prob > F R-squared Adj R-squared	= 22.80 = 0.0000 = 0.6746 = 0.6450 = 1.4e+0
reg tdef in Source Model Residual Total	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12	f df 3 33 36 Std. E	MS 4.6889e+11 2.0563e+10 5.7924e+10 rrr. t	P> t	F(3, 33) Prob > F R-squared Adj R-squared Root MSE	= 22.80 = 0.0000 = 0.6746 = 0.6450 = 1.4e+0 Interval]
reg tdef in Source Model Residual Total tdef intr psavert	tr psavert bde <u>SS</u> 1.4067e+12 6.7857e+11 2.0852e+12 <u>Coef.</u> 49640.62 45779.34	f df 3 33 36 Std. E 17414. 10711.	MS 4.6889e+11 2.0563e+10 5.7924e+10 mrr. t 29 2.85 11 4.27	P> t 0.007 0.000	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43	= 22.80 = 0.0000 = 0.6746 = 0.6450 = 1.4e+0 Interval] 85070.25 67571.25
reg tdef in Source Model Residual Total tdef intr psavert bdef	SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.30886	f df 3 33 36 Std. E 17414. 10711. 94.75	MS 4.6889e+11 2.0563e+10 5.7924e+10 rrr. t 29 2.85 11 4.27 16 0.77	P> t 0.007 0.000 0.445	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43 -119.4647	= 22.8(= 0.0000 = 0.6746 = 0.6450 = 1.4e+0 Interval) 85070.22 266.0825
reg tdef in Source Model Residual Total tdef intr psavert bdef cons	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Ccef. 49640.62 45779.34 73.30866 -808927.5	f df 3 33 36 Std. E 17414. 10711.	MS 4.6889e+11 2.0563e+10 5.7924e+10 rrr. t 29 2.85 11 4.27 16 0.77	P> t 0.007 0.000	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43	= 22.8(= 0.0000 = 0.6746 = 0.6450 = 1.4e+0 Interval) 85070.22 266.0825
reg tdef in Source Model Residual Total tdef tdef psavert bdef cons	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.30886 e808927.5 residuals	f df 3 33 36 Std. E 17414. 10711. 94.75	MS 4.6889e+11 2.0563e+10 5.7924e+10 rrr. t 29 2.85 11 4.27 16 0.77	P> t 0.007 0.000 0.445	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43 -119.4647	= 22.80 = 0.0000 = 0.6746 = 0.6450 = 1.4e+0 Interval] 85070.25 67571.25 266.0825
reg tdef in Source Model Residual Total tdef intr psavert bdef	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.30886 e808927.5 residuals	f df 3 33 36 Std. E 17414. 10711. 94.75	MS 4.6889e+11 2.0563e+10 5.7924e+10 2.9 2.85 11 4.27 16 0.77 69 -8.18	P> t 0.007 0.000 0.445 0.000	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43 -119.463 -119.463 -119.4029	<pre>2 22.86 = 0.0000 0.6746 = 0.6456 = 1.4e+0 Interval] 85070.22 667571.25 266.0825 = -607826.5 -607826.5</pre>
reg tdef in Source Model Residual Total tdef tdef cons	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Ccef. 49640.62 45779.34 73.30866 45779.34 73.30868 v	df 3 33 36 Std. E 17414. 10711. 94.75 98844. df	MS 4.6889e+11 2.0563e+10 5.7924e+10 2.9 2.85 11 4.27 16 0.77 69 -8.18	P> t 0.007 0.000 0.445 0.000	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23907.43 -119.4647 -1010029 F(2, 34)	<pre>= 22.80 = 0.0000 = 0.6746 = 0.6450 = 1.4e+0 Interval] 85070.22 67571.22 266.0825 -607826.5</pre>
reg tdef in Source Model Residual Total tdef javert bdef cons predict v, reg lnpbdt Source	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.30886 -808927.5 residuals tdef v SS	df df 3 33 36 Std. E 17414. 10711. 94.75 98844. df 2	MS 4.6899e+11 2.0563e+10 5.7924e+10 2.9 2.85 11 4.27 16 0.77 69 -8.18 MS	P> t 0.007 0.000 0.445 0.000	F(3, 33) Prob > F R-squared Adj R-squared Root MSE (95% Conf. 14210.98 23987.43 -119.4647 -1010029 F(2, 34) Prob > F R-squared	 22.86 0.0000 0.6455 1.4e+f Interval] 85070.25 67571.22 266.0825 -607826.5 -79.55 -0.0205 0.8228
reg tdef in Source Model Residual Total tdef intr psavert cons predict v, reg lnpbdt Source Model	tr pawert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.3086 -808927.5 residuals tdef v SS 21.9748842	f df 3 3 3 3 6 5 5 4 5 9 8 8 4 4 5 9 8 8 4 4 2 3 4	MS 4.6889±11 2.0563±10 5.7924±10 Trr. t 2.9 2.85 11 4.27 16 0.77 69 -8.18 MS 10.9874421	P> t 0.007 0.000 0.445 0.000	F(3, 33) Prob > F R=aquared Adj R=aquared Root MSE [95% Conf. 14210.98 23987.43 -119.4647 -1010029 Number of obs F(2, 34) Prob > F	- 22.8(- 0.000(- 0.645(- 1.4e+(Interval) 85070.22 67571.22 266.0822 -607826.5
reg tdef in Source Model Residual Total tdef intr psavert cons predict v, reg lnpbdt Source Model Residual	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 40640.62 45779.34 73.30886 4580227.5 residuals tdef v SS 21.9748842 4.69882917 26.6737133	f df 3 3 3 3 6 5 5 4 5 9 8 8 4 4 5 9 8 8 4 4 2 3 4	MS 4.6889±11 2.0563±10 5.7924±10 5.7924±10 1.427 16078 1608.18 1.3820058 .740936481	P> t 0.007 0.000 0.445 0.000	F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43 -119.4647 -119.4647 -1010029 Number of obs F(2, 34) Prob > F R-squared Adj R-squared	<pre>- 22.8(- 0.000(- 0.674(- 0.645(- 1.4e+(Interval) 85070.22 266.082(- 607826.5) - 607826.5 - 70.5(- 0.000(- 0.8233) - 0.8133 37175</pre>
reg tdef in Source Model Residual Total tdef bdef psavert bdef cons predict v, reg lnpbdt Source Model Residual	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.30886 -808927.5 residuals tdef v SS 21.9748842 4.69882917 2.6.6737133 Coef.	f df 33 36 Std. E 17414. 10711. 94.75 98844. df 2 34 36	MS 4.6889e+11 2.0563e+10 5.7924e+10 	<pre>P> t 0.007 0.000 0.445 0.000</pre>	F(3, 33) Prob > F R-squared Adj R-squared Root MSE (95% Conf. 14210.99 23987.43 -119.4647 -1010029 F(2, 34) Prob > F R-squared Adj R-squared Root MSE	- 22.8C - 0.000C - 0.642 - 0.645 - 1.4e+C Interval 85070.22 266.0822 - 607826.5 - 79.55 - 0.000C - 0.8238 - 0.8135 37175
reg tdef in Source Model Residual Total tdef psavert _cons predict v, reg lnpbdt Source Model Residual Total	tr psavert bde SS 1.4067e+12 6.7857e+11 2.0852e+12 Coef. 49640.62 45779.34 73.30886 -808927.5 residuals tdef v SS 21.9748842 4.69882917 2.6.6737133 Coef.	f df 3 3 3 6 Std. E 17414. 10711. 94.75 98844. df 2 34 36 Std. E Std. E	MS 4.6889e+11 2.0563e+10 5.7924e+10 5.7924e+10 7 10 7 10 10 10 10 10 10 10 10 10 10 10 10 10	<pre>P> t 0.007 0.000 0.445 0.000</pre>	<pre>F(3, 33) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 14210.98 23987.43 -119.4647 -1010029 Number of obs F(2, 34) Prob > F R-squared Adj R-squared Adj R-squared [95% Conf.</pre>	- 22.8C - 0.000C - 0.642 - 0.645 - 1.4e+C Interval] 85070.22 - 607826.5 - 79.5C - 0.000C - 0.8235 - 0.8135 - 0.8135 37177 Interval]

2-STAGE LEAST SQUARE RESULT

. ivregress 2sls lnpbdt bdef (tdef = intr psavert)

37	s =	Number of obs		on	LS) regressi	variables (2S)	nstrumental v
69.22	=	Wald chi2(2)					
0.0000	=	Prob > chi2					
0.5543	=	R-squared					
.56685	=	Root MSE					
terval]	. In	[95% Conf.	₽> z	Z	Std. Err.	Coef.	lnpbdt
		[95% Conf. -4.75e-06			Std. Err. 5.63e-07		lnpbdt tdef

7.361041 .169621 43.40 0.000 7.02859 7.693492

_____ 7.3

Instruments: bdef intr psavert

Vol. 3, No. 03; 2019

ISSN: 2456-7760

POST ESTIMATION TESTS FOR 2SLS

. estat endog

Tests of endogeneity Ho: variables are exogenous

Durbin (score) chi2(1)	= 18.7897 (p = 0.0000)	
Wu-Hausman F(1,33)	= 34.05 (p = 0.0000)	

. estat firststage

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(2,33)	Prob > F
tdef	0.6746	0.6450	0.5988	24.6221	0.0000

Minimum eigenvalue statistic = 24.6221

Critical Values Ho: Instruments are weak	<pre># of endogenous regressors: 1 # of excluded instruments: 2</pre>
2SLS relative bias	5% 10% 20% 30% (not available)
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 15% 20% 25% 19.93 11.59 8.75 7.25 8.68 5.33 4.42 3.92

. estat overid

Tests of overidentifying restrictions:

Sargan (score) chi2(1) = .01103 (p = 0.9164) Basmann chi2(1) = .009841 (p = 0.9210)