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ABSTRACT 

This paper surveys the contributions and applications of queuing theory in the field of banking 

data networks.  

The Little’s Law mathematical definitions of formula for a specific λ arrival rate, and the   

average service time will be described, used and confirmed by computer simulations of real 

queues usually found in the banking computing systems. 

The goal is to provide sufficient information to computer performance analysts who are 

interested in using the queueing theory to model a network of banking computer systems using 

the right simulation model applied in real-life scenarios, e.g. overcoming the negative impacts of 

the European banking regulations while moving towards green computing. 
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INTRODUCTION 

With the global advancement seen in the last 20 years, especially with the increased volume, 

complexity, spread of exchanges in the economic and financial relations, all the computing 

systems, but especially the banking systems, had to adapt fast not only their banking regulations 

[16] [18] to the continuous changing world [12] but also their networking field, which had 

changed drastically over the time. Perhaps, the most fundamental change has been the rapid 

development of optical fiber technology. This has created limitless opportunities for new digital 

networks with greatly improved capabilities. The current broadband integrated service networks 

that provide integrated data, voice and video seem to have almost nothing in common with the 
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data networks of the last 20 years, but in fact, many of the underlying principles, mathematical 

and statistical laws are the same. 

2. Little’s Theorem [2] 

The little’s Theorem was first published in 1961 and can be stated as 'L W , where L stands 

for length or queue length, '  stands for the arrival rate and W stands for the waiting time. 

Actually this is translated to the fact that the expected queue length is equal to the arrival rate 

multiplied by the expected waiting time. This is very neat because it connects an average of a 

discrete random variable (L) and an average of a continuous random variable(W).  From a 

practical point of view, it turns out that it is often relatively easy to calculate the average queue 

length and from that, by dividing by   the average waiting times can be easily calculated. We 

can definitely go back and forth between the 2 averages, but it is obvious that L is usually easier 

to calculate because it is a discrete variable, while W is a continuous variable. 

The basic idea is that for the system represented in Fig.1,we have some entities/customers who 

arrive and enter the system at rate '  - entry rate (noted lambda prime in order to distinguish 

between the arrival rate and the entry rate).The arrival rate is the rate at which the customers seek 

to enter the system, but in general they do not necessarily enter. When a customer enters the 

system, it stays there for an average length of time called W (stands for waiting time) and while 

it is there waiting for its lifetime to expire, on average there is L of them present. The target is to 

find the relationship between the average amount of time that a customer spends in the system 

and the number of customers in the systems having their lives spent. 

Little’s original proof was quite difficult and made some assumptions that turned out to be not 

necessary, and over the years this has been refined and generalized over and over again and in 

fact there are many paper now that have to do with Little’s theorem and its consequences. 

Although originally assumptions were made that were essentially probabilistic or stochastic 

about the stochastic processes involved, it turned out that the it is really a deterministic rule and 

that the stochastic part had nothing to do with it. This underlines the robustness of the formula, 

because it is going to hold regardless of whether these arrivals occur according to a Poisson 

process, and regardless of the service times distribution. Practically the only essential 

requirement is that the L, W and   must exist. But as long as they exist, then the formula is 

going to hold. An intuitive argument  that quickly explains the formula. Imagining that the 

system is observed over a long period of time T and that as the customers enter, they bring with 

them their lifetime, and that these lifetimes build-up, it is obvious that these must equal to the 

lifetimes that are used-up.  
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Over a certain period of time t, the expected number of arrivals that enter the system would be 

't and each of those customers follows a blueprint of entering the system, staying there for its 

lifetime (in average W), therefore the total amount of lifetime brought into the system over a 

certain period of time t is equal to 'tW . 

On the other hand, the amount of used-up lifetime during the interval of time of length t must be 

evaluated. On average, there are L people in that system and their lifetimes are expiring in 

parallel, at the rate of one unit of life per unit of time, so therefore, in time t, if we had 1 person 

present, the amount of lifetime that would expire would be t, consequently, for L people would 

be Lt. 

On the long run, the boundaries of the initial condition regarding t will be irrelevant, and t can be 

cancelled out since it is a non-negative value. Mathematically, this can be written as: 

'tW Lt  which is equivalent to 'W L  . 

The beauty of this is that the definition of system is very flexible and the particular type of the 

stochastic processes involved are irrelevant, making the Little’s theorem very powerful and 

general. 

3.Using Little’s Theorem to forecast a database server’s performance 

3.1) IO Performance indicators 

The Oracle database RDBMS is one of the best software example in which performance 

indicators are very good documented. For the purpose of this article, we will take into 

consideration only performance indicators related to storage subsystems 

SELECT pname,pval1 FROM aux_stats$ WHERE sname='SYSSTATS_MAIN'; 

PNAME                               PVAL1 

------------------------------ ---------- 

CPUSPEED                              836 

MAXTHR                          992766976 

MBRC                                   53 

MREADTIM                               24 

SLAVETHR                          8995840 
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SREADTIM                                6 

In the above extract, the MBRC is the effective multi block read count during the collection 

interval. The example shows a high-end system. The SREADTIM(single block read time in 

milliseconds) of 6 ms is not very fast, but the MAXTHR(maximum throughput) is about 1GB/s. 

When speaking about the I/O Statistics, the number of blocks read and written is counted by the 

performance statistics “physical reads” and “physical writes”. 

The performance statistic “physical reads” includes: physical reads cache, physical reads direct, 

physical reads direct temporary table space, physical reads direct (lob). 

The performance statistic “physical writes” includes: physical writes from cache, physical writes 

direct, physical writes direct temporary table space, physical writes direct (lob). 

All statistics count the number of Oracle blocks read or written and not to hard disk blocks. 

The Oracle Database documents also the wait events related to I/O. the most common “System 

I/O” wait events are : 

 ‘log file parallel write’ (LGWR writing redo records from the log buffer to the redo log 

files) 

 ‘log file sequential read’ (ARCH reads redo log files for archiving) 

 ‘db file parallel write’ (DBWR is performing a write to files) 

 ‘control file parallel write’, ‘control file sequential read’ (usually performed by the 

DBWR, LGWR, CKPT and ARCH database processes) 

 ‘io done’ (on platforms that do not support asynchronous I/O a background process waits 

for an I/O to complete or it waits for a slave process to become available to submit an I/O 

request) 

 ‘RMAN backup & recovery I/O’ 

Computation of Peak I/O  

For predicting the peak I/O, elements of queueing theory like the M/M/1 queue [4] are needed. 

Tha M/M/1 queue successfully describes an I/O subsystem e.g. HDDs, RAIDs, Logical 

Volumes, Volume groups. Each of these are a separate M/M/1 queue, and each one of the has 

different response-times and throughput. For a scalable model, variation must be taken into 

consideration. When speaking about computer performance, a multiple CPU queue is managed 

as a M/M/n queue, where n is the number of CPU cores. This can be understood as a new-style 
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airport queue, with multiple counters serving one queue, while any I/O subsystem queue is 

always a single server queue. 

Fortunately, the UNIX and Linux systems have a multitude of utilities for measuring 

performance of I/O subsystems. In Fig.1 an overview is presented. 

  

Figure 1. overview of tool for analysing IO performance 

One of the best examples is given by the following output of the command iostat -x. The -x 

option display extended statistics. This option works with post 2.5 kernels since it needs 

/proc/disk stats file or a mounted sysfs to get the statistics.  

iostat -x  

avg-cpu:  %user   %nice %system %iowait  %steal   %idle 

           0.12    0.00    0.89    1.82    0.00   97.16 

 

Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s %util 

sdc               8.84  4721.32    3.68   38.62    30.92  4760.23  9.92 

sda               1.54     0.98   26.69    1.48   754.86    21.17  1.70 

sdb               8.87  6392.50    3.68   52.23    30.95  6445.29  9.42 

In the above example, the iostat utility is used. Although the utility provides a big amount of 

data, extracting only the data that needs to be interpreted is the key factor for a proper and 

correct forecast of performance. The data will be extracted in a snapshot-based way, collecting it 
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at precise, repeating time intervals. For collecting the data, a database is needed, where the 

performance data will be stored. 

The following image is a snapshot from the swingbenchutility, showing a maximum of 23032 

transactions per minute, respectively 409 transactions per second. 

 

Using an oracle database, the following io_stat2 table will be created containing: 

- The name of the IO device,  

- The number of read requests that were issued to the device per second from the r/s column,  

- The number of write requests that were issued to the device per second from the w/s column 

- Percentage of CPU time during which I/O requests were issued to the device from the 

%utilcolumn(bandwidth utilization for the device). Device saturation occurs when this value 

is close to 100%.  

- block changes as value from the database and  

- redo writes as value from the database. 

The following code illustrates the structure of the io_stat2 table and the routine that is collecting 

performance data during the swingbench workload every second. 

CREATE TABLE io_stat2(snap_time DATE, 

io_device VARCHAR2(20), 

io_req_read      NUMBER, 

io_req_write     NUMBER, 

io_util          NUMBER, 

block_changes    NUMBER, 

redo_wr        NUMBER); 

Loading sequence : 

while true; do 

iostat -x 1 2 |\ 
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sed 1,13d | sed 3d |\ 

awk '{ printf("%s %s %s %s\n", $1, $4, $5, $12); }' |\ 

while read DEVICE R_SEC W_SEC UTIL; do 

$ORACLE_HOME/bin/sqlplus -s system/oracle <<EOF 

VARIABLE v_bl_changes NUMBER; 

VARIABLE v_redo_size NUMBER; 

BEGIN 

SELECT value INTO :v_bl_changes FROM v\$sysmetric WHERE metric_name ='DB Block Changes Per Sec' 

AND group_id = 3; 

SELECT value INTO :v_redo_size FROM v\$sysmetric WHERE metric_name ='Redo Writes Per Sec' AND 

group_id = 3; 

INSERT INTO io_stat2 VALUES (sysdate,'$DEVICE',$R_SEC,$W_SEC,$UTIL,:v_bl_changes,:v_redo_wr); 

COMMIT; 

END; 

/ 

EXIT; 

EOF 

The above code sequence collect data in the io_stat2 table. Using simple SQL queries against the 

io_stat2 table. For example, finding the average required reads/writes and the IO utilization for 

every IO subsystem, the following is used:  

SQL> select IO_DEVICE,  avg(IO_REQ_READ),avg(IO_REQ_WRITE) , avg(IO_UTIL) from io_stat2 group by 

IO_DEVICE; 

IO_DEVICE            AVG(IO_REQ_READ) AVG(IO_REQ_WRITE) AVG(IO_UTIL) 

-------------------- ---------------- ----------------- ------------ 

sda                        53.6677117        782.275275   19.1228947 

sdb                        62.7722998        762.438776   19.8460984 

Using the same approach, other important performance data can be found. Since the data files 

respectively the redo logs were placed on separate IO devices, the same workload can help in 

accurately forecasting the performance of both IO components. 

SQL> select IO_DEVICE "DF Drive" ,AVG(BLOCK_CHANGES) from io_stat2 where IO_DEVICE='sdb' group by 

IO_DEVICE; 
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DF Drive             AVG(BLOCK_CHANGES) 

-------------------- ------------------ 

sdb                          3031.32136 

SQL> select IO_DEVICE "REDO Drive" ,AVG(REDO_SIZE) from io_stat2 where IO_DEVICE='sda' group by 

IO_DEVICE; 

REDO Drive           AVG(REDO_SIZE) 

-------------------- -------------- 

sda                      65.9950912 

4. Analyzing the data 

The question being answered by the Little’s Law and Queueing Theory in generalis how would a 

specific system behave when the workload increases by 10%, 20% or more. For the above case 

the performance of each of the IO devices will be calculated, but also a weighted performance 

value. 

Weighted average service time for all devices is calculated as the arrival rate weighted average 

for all devices. For example,  
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s the weighted average service time that differs from the unweighted average service time of 

=(0.02444522+0.02444522)/2=0.02523749 for the following dataset, but making it a more 

realistic values as it is closer to reality :  

Device Arrival rate Utilization% ServiceTime 

/dev/sda 782.275275 (r/s+w/s)* 19.1228947 0.02444522 

/dev/sdb 762.438776 (r/s+w/s)* 19.8460984 0.02444522 

*arrival rate calculated as read + write requests. 

According to the Little [4] formula, the answer time is calculated as the sum of the service time 

and queueing wait time(T=Ts+Tw), where the queueing wait time is a function of the service 
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time (easily measured) and utilization (reported by most of the OS utilities, e.g. iostat) 

Tw=Ts/(1-U). 

In the following table, once the first line is obtained (corresponding to 100% of the workload) 

using the above mentioned formulas, it is only a matter of increasing the workload, respectively 

the arrival rate by 10%, 20% and so on until the breaking point of the IO device. 

 

Figure 2. Answer times and breaking point for the IO subsystem 

In Fig. 2 it can be seen that increasing the workload by 10%, 20%, up to 490% increases the 

response time, but there is a clear breaking point around 505%, where the response time gets 

extremely high from one iteration to the next, making the IO device practically impossible to 

use. The graphic of this simulation will always look as in the fig.xxx, almost linearly until the 

spike. 

 

Figure 3. Graphical interpretation of the answer times as load increases 
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Conclusions 

Such simulations help a lot in answering questions like: 

- Will the system support the 20% increase in reporting that the European Bank is imposing?  

- There is a trend of 5% more processing each year. What is the best moment to do a hardware 

refresh, without coming to a hardware failure? 

There is also a clear recommendation to have a performance Data Warehouse where snapshot 

data is stored. This will help both in analysing performance issues and in forecasting the 

performance of the whole system. 

Moreover, such a simulation gives insight on how such a queue would behave as a result of 

different arrival processes and service times. Further, we consider that it offers a methodology 

for looking into more complicated cases not only like getting input times from a network of 

banking systems trying to implement a new set of banking regulations where a mathematical 

approach cannot help, but also in other complex areas. 
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